Enabling Symbiosis in Multi-Robot Systems through Multi-Agent Reinforcement Learning

Xuezhi Niu, Natalia Calvo Barajas & Didem Gürdür Broo

Cyber-Physical Systems Lab, Department of Information Technology, Uppsala University

May 13, 2025

Agenda

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Conclusions

Introduction •000

Introduction & Motivation

Introduction

0000

Autonomous Mobile Robots (AMRs) working in a warehouse. Image source: Wetuc

- Cyber-Physical System (CPS) are increasingly deployed across domains; multi-robot systems are a clear instance of this trend [1].
- Autonomous robots are increasingly deployed in warehouse logistics, offering a concrete and scalable example of multi-robot systems.
- Extended types of robots these systems are often designed in isolation, hindering their ability to act as holistic ecosystem [2].

In multi-robot systems, robots acting in isolation lead to:

- Idle robots
- Resource conflicts (e.g., charging stations)
- Inefficient energy use and delays

SvmMARL

Challenges

- Warehouse robots operate autonomously Each robot makes local decisions based on its own task queue and battery.
- But pure independence causes inefficiencies
 - Charging contention: multiple robots queue for a limited number of stations.
 - Imbalance: some robots do most of the work; others conserve too much energy.
- Centralized MARL suffers from the curse of dimensionality High training cost and poor execution-time adaptability under partial observability.

We ask: Can minimal cooperation improve coordination in decentralized multi-robot systems?

Contributions

- Symbiotic MARL with bio-inspired coordination: We develop a novel symbiotic MARL architecture that enhances multi-robot collaboration by incorporating ecological principles into the learning process
- Case study in warehouse logistics: Simulated warehouse experiments demonstrate measurable gains in system performance (10.7%) and resource utilization (13.81%) compared to non-symbiotic baselines.

- 2 Methodology

Symbiosis!

What is Symbiosis?

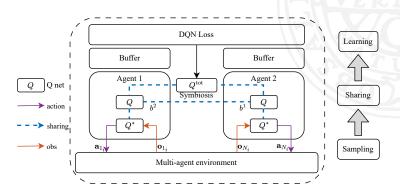
A biological relationship where two or more organisms interact for continuous existance, including mutualism, commensalism, and parasitism.

Mycorrhizal networks between trees and fungi — sharing resources and information to support collective survival [3]

Mycorrhizal networks between trees and fungi. Image source: Rainbo

Focus on mutualism: Agents shares critical information to support collective behaviors [3].

8 / 16



Methodology ○○●○

Figure 1: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining individual Q-networks for local decision making. The framework integrates sampling from the environment (orange arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online and target networks respectively, with individual buffers for experience replay.

9 / 16

Algorithm

Algorithm 1 MARL Training with Battery Symbiosis

Require: Replay buffer \mathcal{D} , learning rate α , discount factor γ , soft update parameter τ

- Initialize online Q-networks Qⁱ and target networks Q^{*i} for all agents $i = 1, \dots, N$
- 2: while training not converged do
- 3: Sample batch $(s_t, a_t, r_t, s_{t+1}, a_{t+1}, b_t)$ from \mathcal{D}
- 4: for each agent $i = 1 \dots N$ do
- 5: Augment local state:
 - $\mathbf{f} \quad \tilde{\mathbf{s}}_{t}^{i} \leftarrow [\mathbf{s}_{t}^{i}, b_{t}^{1}, \dots, b_{t}^{i-1}, b_{t}^{i+1}, b_{t}^{n}]$
- 6:
 - $\gamma \max_{i} Q_t^{*i}(s_t^i, a_t^i) - Q_t^i(\tilde{s}_t^i, a_t^i))$

$$\max_{\substack{a_t^i \\ a_t^i}} Q_t^{r''}(s_t^i, a_t^i) - Q_t^i(s_t^i, a_t^i))$$

end for

g.

Compute total Q-value:

$$Q^{\text{tot}}(\tilde{s}_t, a_t) \leftarrow \sum_{i=1}^{N} Q^i(\tilde{s}_t^i, a_t^i)$$

Compute TD target:

$$y_t^{\text{tot}} \leftarrow r_t + \gamma \max_{\mathbf{a}_{t+1}} Q^{\text{tot}}(s_{t+1}, \mathbf{a}_{t+1})$$

Compute loss: $L \leftarrow (y_t^{\text{tot}} - Q^{\text{tot}}(s_t, \mathbf{a}_t))^2$ 10:

11: Backpropagate loss and update Qi parameters for all agents

12: Perform soft update of target networks:

13: for each agent $i = 1 \dots N$ do 14:

$$Q^{*i} \leftarrow \tau Q^i + (1-\tau)Q^{*i}$$

3 Results

Training Results

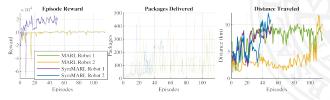


Figure 2: Training performance across three metrics: (a) Cumulative reward per episode, (b) number of packages delivered, and (c) distance traveled. Symbiotic MARL shows faster convergence and more stable learning compared to the non-symbiotic baseline.

- Non-symbiotic MARL struggles to converge due to limited context and poor coordination
- Symbiotic MARL, enabled by minimal battery state sharing, converges faster and yields better task and energy metrics.

$$r_{\text{local}}^{i}(t) = \epsilon_1 \cdot p_i(t) - \epsilon_2 \cdot e^{20 \cdot (0.1 - b_i(t))} \cdot \mathbb{1}(b_i(t) < 0.1)$$

$$r_{\mathrm{global}}(t) = T_{\mathrm{total}} - \frac{1}{N} \sum_{i=1}^{N} (T_i - \overline{T}) - 10 \cdot \mathbb{1}(n_a(a_i(t)))$$

12 / 16

Methodology Results Conclusions

○○○○ ○○○ ○○○

Results

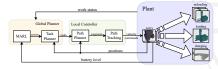


Figure 3: System architecture of the warehouse setup, showing the plant (robot dynamics and energy model), local controllers (path planning and execution), and a global controller integrating MARL for coordination, task allocation, and collision avoidance.

10.7% system performance improvement and 13.81% resource utilization efficiency

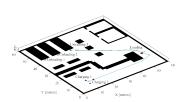


Figure 4: Layout of the simulated warehouse environment $(60m \times 60m)$.

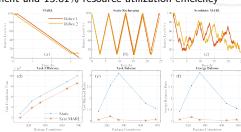


Figure 5: Evaluation of static recharging and MARL with and without symbiosis.

4 Conclusions

Conclusions & Future Works

Conclusions

- Introduced a bio-inspired Symbiotic MARL framework using battery-state sharing to improve coordination in multi-robot systems.
- Demonstrated performance gains in task completion time (10.7%) and energy balance (13.8%) in a warehouse simulation.
- Validated that ecological symbiosis principles can address coordination and interoperability challenges in CPS.

Future Works

- Scale to larger heterogeneous fleets and more complex environments.
- Compare against additional MARL baselines using VDN, QMIX, and actor-critic methods (e.g., MADDPG).
- Apply actor-critic methods (e.g., MADDPG) to support group-level symbiosis with decentralized execution.

References

- [1] V. Lesch, M. Züfle, A. Bauer, L. Iffländer, C. Krupitzer, and S. Kounev, "A literature review of iot and cps—what they are, and what they are not," Journal of Systems and Software, vol. 200, p. 111631, 2023.
- [2] D. Gürdür and F. Asplund, "A systematic review to merge discourses: Interoperability, integration and cyber-physical systems," Journal of Industrial information integration, vol. 9, pp. 14-23, 2018.
- [3] S. W. Simard, K. J. Beiler, M. A. Bingham, J. R. Deslippe, L. J. Philip, and F. P. Teste, "Mycorrhizal networks: mechanisms, ecology and modelling," Fungal Biology Reviews, vol. 26, no. 1, pp. 39-60, 2012.

