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Introduction & Motivation

® Cyber-Physical System (CPS) are
increasingly deployed across domains;
multi-robot systems are a clear instance of
this trend [1].

® Autonomous robots are increasingly deployed
in warehouse logistics, offering a concrete and
scalable example of multi-robot systems.

_ _ ® Extended types of robots these systems are
Autonomous Mobile Robots (AMRS) working often designed in isolation, hindering their
in a warehouse. Image source: Wetuc . . .
ability to act as holistic ecosystem [2].
In multi-robot systems, robots acting in isolation lead to:
® [dle robots
® Resource conflicts (e.g., charging stations)

® |nefficient energy use and delays
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Challenges

® Warehouse robots operate autonomously Each robot makes local
decisions based on its own task queue and battery.

® But pure independence causes inefficiencies

® Charging contention: multiple robots queue for a limited
number of stations.

® |mbalance: some robots do most of the work; others conserve
too much energy.

® Centralized MARL suffers from the curse of dimensionality High
training cost and poor execution-time adaptability under partial
observability.

We ask: Can minimal cooperation improve coordination in decentralized
multi-robot systems?

X. Niu, xuezhi.niu@it.uu.se CPS-Lab @ IT, Dept.

SymMARL



Introduction
[e]e]e] ]

Contributions

¢ Symbiotic MARL with bio-inspired coordination: We
develop a novel symbiotic MARL architecture that enhances
multi-robot collaboration by incorporating ecological principles
into the learning process

® Case study in warehouse logistics: Simulated warehouse
experiments demonstrate measurable gains in system
performance (10.7%) and resource utilization (13.81%)
compared to non-symbiotic baselines.
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Symbiosis!

What is Symbiosis?

A biological relationship where two or more organisms interact for

continuous existance, including mutualism, commensalism, and
parasitism.

® Mpycorrhizal networks between trees and fungi — sharing resources and
information to support collective survival [3]

Mycorrhizal networks between trees and fungi. Image source: Rainbo

Focus on mutualism: Agents shares critical information to support collective
behaviors [3].
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Symbiosis into MARL
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Figure 1: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining
individual Q-networks for local decision making. The framework integrates sampling from the environment (orange
arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online
and target networks respectively, with individual buffers for experience replay.
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Algorithm

Algorithm 1 MARL Training with Battery Symbiosis

Require: Replay buffer D, learning rate «, discount fac- 7: end for
tor +y, soft update parameter T 8: Compute total Q-value:
1: Initialize online Q-networks @' and target networks Q™ (3¢, ar) Z{il Q/'('é;, a';)
Q*' for all agents i=1,...,N 9: Compute TD target:
2: while training not converged do ytrot — ety ;Tla>1< th(swla ary1)
3: Sample batch (st, at, rt, Spr1, @ b¢) from D s
4: for e’;ch agent(i; 1t 't‘ ,\;J:jlo e+t be) 10: Compute loss: L <— (ygot - QtOt(.sfy at))z
5: Augment local state: 11: Backpropagate loss and update Q' parameters
w3 [sh bl b B b 12_f°' all agents
5 Perform soft update of target networks:
6: Compute online Q-value: 13 for each agent i=1... N do
W QEa) QL) +oale + 7y o jTQ,. Al e
% | ! /(e U .
Y ";?X QF (st a) — Q3¢ 2p)) 15: end for
16: end while
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Training Results
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Figure 2: Training performance across three metrics: (a) Cumulative reward per episode, (b) number of packages
delivered, and (c) distance traveled. Symbiotic MARL shows faster convergence and more stable learning compared

to the non-symbiotic baseline.
® Non-symbiotic MARL struggles to converge due to limited context and poor
coordination.

® Symbiotic MARL, enabled by minimal battery state sharing, converges faster
and yields better task and energy metrics.

Ao =e1-pi(t) — ez £20-(0-1—bj(1)) . 1(bi(t) < 0.1)

N

Fobl(8) = Traral = 3 > (Ti = ) = 10+ 1(na(ai(8)

i=1
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Results

work status
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Figure 3: System architecture of the warehouse setup, showing the plant (robot dynamics and energy model), local
controllers (path planning and execution), and a global controller integrating MARL for coordination, task

allocation, and collision avoidance.

10.7% system performance improvement and 13.81% resource utilization efficiency
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Figure 4: Layout of the simulated warehouse S Pk

environment (60m x 60m).
Figure 5: Evaluation of static recharging and MARL with and

without symbiosis.
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Conclusions & Future Works

Conclusions

® Introduced a bio-inspired Symbiotic MARL framework using battery-state
sharing to improve coordination in multi-robot systems.

® Demonstrated performance gains in task completion time (10.7%) and energy
balance (13.8%) in a warehouse simulation.

® Validated that ecological symbiosis principles can address coordination and
interoperability challenges in CPS.
Future Works
® Scale to larger heterogeneous fleets and more complex environments.

® Compare against additional MARL baselines using VDN, QMIX, and actor-critic
methods (e.g., MADDPG).

® Apply actor-critic methods (e.g., MADDPG) to support group-level symbiosis
with decentralized execution.
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