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Introduction & Motivation

Autonomous Mobile Robots (AMRs) working
in a warehouse. Image source: Wetuc

• Cyber-Physical System (CPS) are
increasingly deployed across domains;
multi-robot systems are a clear instance of
this trend [1].

• Autonomous robots are increasingly deployed
in warehouse logistics, offering a concrete and
scalable example of multi-robot systems.

• Extended types of robots these systems are
often designed in isolation, hindering their
ability to act as holistic ecosystem [2].

In multi-robot systems, robots acting in isolation lead to:
• Idle robots
• Resource conflicts (e.g., charging stations)
• Inefficient energy use and delays
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Challenges

• Warehouse robots operate autonomously Each robot makes local
decisions based on its own task queue and battery.

• But pure independence causes inefficiencies
• Charging contention: multiple robots queue for a limited

number of stations.
• Imbalance: some robots do most of the work; others conserve

too much energy.
• Centralized MARL suffers from the curse of dimensionality High

training cost and poor execution-time adaptability under partial
observability.

We ask: Can minimal cooperation improve coordination in decentralized
multi-robot systems?
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Contributions

• Symbiotic MARL with bio-inspired coordination: We
develop a novel symbiotic MARL architecture that enhances
multi-robot collaboration by incorporating ecological principles
into the learning process

• Case study in warehouse logistics: Simulated warehouse
experiments demonstrate measurable gains in system
performance (10.7%) and resource utilization (13.81%)
compared to non-symbiotic baselines.
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Symbiosis!

What is Symbiosis?
A biological relationship where two or more organisms interact for
continuous existance, including mutualism, commensalism, and
parasitism.

• Mycorrhizal networks between trees and fungi — sharing resources and
information to support collective survival [3]

Mycorrhizal networks between trees and fungi. Image source: Rainbo

Focus on mutualism: Agents shares critical information to support collective
behaviors [3].
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Symbiosis into MARL
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Figure 1: Agents share battery information through symbiosis connections (blue dashed lines) while maintaining
individual Q-networks for local decision making. The framework integrates sampling from the environment (orange
arrows), sharing of symbiotic information, and learning through DQN loss computation. Q and Q* represent online
and target networks respectively, with individual buffers for experience replay.
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Algorithm

Algorithm 1 MARL Training with Battery Symbiosis

Require: Replay buffer D, learning rate α, discount fac-
tor γ, soft update parameter τ

1: Initialize online Q-networks Qi and target networks
Q∗i for all agents i = 1, . . . , N

2: while training not converged do
3: Sample batch (st, at, rt, st+1, at+1, bt) from D
4: for each agent i = 1 . . . N do
5: Augment local state:

s̃i
t ← [si

t, b1t , ..., bi−1
t , bi+1

t , bn
t ]

6: Compute online Q-value:
Qi(s̃i

t, ai
t) ← Qi

t(s̃
i
t, ai

t) + α(rt +

γ max
ai
t

Q∗i
t (si

t, ai
t)− Qi

t (̃s
i
t, ai

t))

7: end for
8: Compute total Q-value:

Qtot(s̃t, at)←
∑N

i=1 Qi(s̃i
t, ai

t)
9: Compute TD target:

ytott ← rt + γ max
at+1

Qtot(st+1, at+1)

10: Compute loss: L←
(
ytott − Qtot(st, at)

)2
11: Backpropagate loss and update Qi parameters

for all agents
12: Perform soft update of target networks:
13: for each agent i = 1 . . . N do
14: Q∗i ← τQi + (1− τ)Q∗i

15: end for
16: end while
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Training Results

Figure 2: Training performance across three metrics: (a) Cumulative reward per episode, (b) number of packages
delivered, and (c) distance traveled. Symbiotic MARL shows faster convergence and more stable learning compared
to the non-symbiotic baseline.

• Non-symbiotic MARL struggles to converge due to limited context and poor
coordination.

• Symbiotic MARL, enabled by minimal battery state sharing, converges faster
and yields better task and energy metrics.

ri
local(t) = ϵ1 · pi(t)− ϵ2 · e20·(0.1−bi(t)) · 1(bi(t) < 0.1)

rglobal(t) = Ttotal −
1
N

N∑
i=1

(Ti − T̄)− 10 · 1(na(ai(t)))
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Results
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Figure 3: System architecture of the warehouse setup, showing the plant (robot dynamics and energy model), local
controllers (path planning and execution), and a global controller integrating MARL for coordination, task
allocation, and collision avoidance.

10.7% system performance improvement and 13.81% resource utilization efficiency

Figure 4: Layout of the simulated warehouse
environment (60m × 60m).

Figure 5: Evaluation of static recharging and MARL with and
without symbiosis.
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Conclusions & Future Works

Conclusions
• Introduced a bio-inspired Symbiotic MARL framework using battery-state

sharing to improve coordination in multi-robot systems.
• Demonstrated performance gains in task completion time (10.7%) and energy

balance (13.8%) in a warehouse simulation.
• Validated that ecological symbiosis principles can address coordination and

interoperability challenges in CPS.

Future Works
• Scale to larger heterogeneous fleets and more complex environments.
• Compare against additional MARL baselines using VDN, QMIX, and actor-critic

methods (e.g., MADDPG).
• Apply actor-critic methods (e.g., MADDPG) to support group-level symbiosis

with decentralized execution.
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