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Introduction & Motivation

Multi-Robot Teams Training in Simulation
• Heterogeneous robots (wheeled,

arms, aerial) can complement
one another in complex tasks [1].

• Coordination across unequal
agents remains challenging [2].

• MARL struggles with credit
assignment and
non-stationarity, especially in
mixed-capability teams [3].

• Existing reward shaping is often
heuristic [4] and fragile:

• Unstable training
• Poor coordination
• Breaks under strong heterogeneity

Inspiration from Nature: How do biological systems achieve seamless cooperation among diverse entities?
Perhaps nature’s playbook holds clues (e.g., symbiosis in ecosystems [5]).

ICRAS 2025, Osaka, Japan CPS-Lab @ IT, Dept., UU
SymReward 4 / 19



Introduction Methodology Results Conclusions

Biological Inspiration - Mutualism as a Reward Signal

Symbiosis!
A biological relationship where two or more organisms interact for continuous existence.

• Mycorrhizal networks between trees and fungi: sharing resources and information to support collective
survival [6]

Figure 1: Mycorrhizal networks between trees and fungi.

Mutualism ̸= Altruism
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Contributions

• Formal framework for modeling mutualism in multi-robot systems (MRS)

• Reward shaping method inspired by ecological cooperation, promoting robust
coordination under limited task knowledge
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Symbiosis!

Let H = {a1, . . . , an} be a set of heterogeneous robots. Each ai has:

• Capability set Ci • Resource vector Di • Performance function Pi

Symbiotic interaction between ai and aj could be defined as:

I(ai, aj) > max{Pi,Pj} − δ (δ ≥ 0)

Total system performance for a subset S ⊆ H is:

Ptotal(S) =
∑
ai∈S

Pi +
∑

(ai,aj)∈E(S)
I(ai, aj). (1)
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Taxonomy of Interaction Types

Modeling Inter-Agent Symbiosis:
• Mutualism: ∆P(ai, aj) > 0 and ∆P(aj, ai) > 0
• Commensalism: ∆P(ai, aj) > 0 and ∆P(aj, ai) = 0
• Parasitism: ∆P(ai, aj) > 0 and ∆P(aj, ai) < 0

Examples in Mobile Manipulation:
• Mutualism: base positions for better arm reach; arm assists base with

manipulation
• Commensalism: arm acts independently; base reuses trajectory
• Parasitism: arm moves aggressively, destabilizing the base

Goal: Promote mutualism, suppress harmful asymmetries via structured reward
shaping
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Environments for Evaluation

Figure 2: Benchmark training in Isaac Sim 4.5.0 using Isaac Lab, showcasing a
screenshot with 512 parallel environments: (a) Double pendulum dynamics, (b)
Shadow Hand object passing, and (c) Mobile manipulation tasks.

• Basic • Dexterous • Heterogeneous
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Agent Observations and Actions

Ocart ∈ R4, Ocart ∈ R3

Acart ∈ R1, Acart ∈ R1

Cart Pendulum
• Cart: observes position,

velocity, pole angle, pole
velocity; acts on force

• Pendulum: observes pole
angle, pendulum angle and
velocity; acts on torque

Oi ∈ R157

Acart ∈ R20

Shadow Hand
• Each hand: observes joint

poses and velocities, fingertip
poses and velocities, object
and goal poses and velocities,
and object to goal difference;
acts on joint angle commands

Obase ∈ R15, Oarm ∈ R33

Abase ∈ R3, Aarm ∈ R7

Mobile Manipulation
• Base: observes base positions

and velocities, finger positions,
target position; acts on
position

• Arm: observes arm positions
and velocities, finger positions,
target position; acts on joint
states
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Results

Reward formulation:
Ri = αPi + β

∑
j ̸=i

∆P(ai, aj)

Cart Pendulum
• Pcart =

ϵpole pos∥θpole∥2 + ϵpole vel |θ̇pole|
• Ppendulum =

ϵpendulum pos∥θpole +
θpendulum∥2 +

ϵpendulum vel |θ̇pendulum|

• ∆Pcart = ϵalive(1 − δreset) +
ϵterminatedδreset + ϵcart vel |ẋcart|

• ∆Ppendulum =
ϵalive(1−δreset)+ϵterminatedδreset

Shadow Hand
• Pi = 2 e(−20 d), with d =

∥pobject − pgoal∥2

• ∆Pright = ϵrelease(1 − δfail)

• ∆Pleft = ϵcatch(1 − δdrop)

Mobile Manipulation
• Pbase = 5 e(−2 ∥pobj−pgoal∥2) −

ϵvel∥vbase∥2

• Parm = 5 e(−2 ∥pobj−pgoal∥2) −
ϵvel∥q̇arm∥2

• ∆Pbase = −ϵpos∥pxy
ee − pxy

target∥2
• ∆Parm = −ϵpos∥qarm−qtarget∥2
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Results in Simulations
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Results
Figure 3: Training results: total reward per episode with mean (solid) and variation (shaded). Evaluated with five random seeds. (a) Cart Pendulum,
(b) Shadow Hand, (c) Mobile Manipulation.

Figure 4: Mean performance comparison across tasks. Dashed lines indicate baselines. (a) Cart Pendulum, (b) Shadow Hand, (c) Mobile
Manipulation.
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Discussion: Mutualism in Practice

Structured shaping via mutualism:
• Agents: H = {a1, a2, . . . , an} with capabilities Ci, resources Di, performance Pi

• Mutual benefit: I(ai, aj) > max{Pi,Pj} − δ

• Shaping guides coordination without distorting task goals

Empirical findings:
• Cart Pendulum: minimal gains, but improved stability
• Shadow Hand / Mobile Manipulation: smoother learning, faster convergence, lower

variance
• Benefits grow with task complexity and coordination demands

Implication: Reward portability → structure generalizes across tasks, reduces tuning effort
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Conclusions & Future Works

The source code could be found at github.com/Cyber-physical-Systems-Lab/RewMARL
Summary:

• Formal framework for modeling symbiosis in multi-robot systems
• Mutualism-based reward shaping improves coordination in MARL
• Benefits: training stability, policy transfer, robustness

Next steps:
• Learn adaptive interaction functions I(ai, aj)

• Scale to larger, more diverse robot teams
• Combine with intrinsic rewards for open-ended tasks
• Extend to commensalism and parasitism dynamics
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